Разница между алгоритмом и программой
Представления о программах среднестатистического пользователя весьма ограничены и основаны на опыте запуска и работы в приложениях. Мы знаем, что существуют программисты, пишущие программы, а наше дело — воспользоваться результатами их труда.
Об алгоритмах люди, закончившие школу энное время назад, вспоминают в контексте теории алгебры, смутно представляя, что эти знания уж точно не пригодятся. А если приходится столкнуться с пересечением этих понятий — большинство из нас теряется, не находя связей между алгоритмами и программами, и, значит, не понимая поставленной задачи. Иногда эти понятия объединяют, считая, что “алгоритм” — более профессиональное и точное обозначение “программы”. Чтобы заполнить пробелы в представлениях, посмотрим, что все же стоит за терминологией.
Определение
Алгоритм — инструкция, включающая определенный четкий порядок действий, совершаемых для выполнения поставленной задачи. Число действий всегда конечно.
Что такое алгоритм. Видеоурок по информатике 6 класс
Программа (компьютерная, прежде всего) — запись последовательности инструкций, исполняемых компьютером.
Сравнение
В чем разница между алгоритмом и программой ясно уже из терминологии. Казалось бы, в обоих случаях мы видим упорядоченные действия, приводящие к конечному результату. Как понятно из определений, программа может состоять из нескольких алгоритмов, однако иерархия “общее — частное” здесь не прослеживается.
Алгоритм — это вообще любая инструкция, в которой четко перечислены действия. Например, для сборки шкафа. Программой она, конечно, являться не будет. Алгоритм может существовать в любой форме: его можно запомнить, записать в блокнот, зарисовать в виде схемы, продиктовать, так как в основе его — логическая составляющая, а не формальная. Программа же — понятие формальное.
Она представляет собой именно запись набора алгоритмов, причем запись на одном из языков программирования, понятных вычислительной машине. Это может быть не только наш привычный компьютер, но и блок управления любого прибора. Таким образом, алгоритм можно определить как метод или схему воплощения идеи, программу — как ее реализацию конкретными средствами.
Еще одно отличие программы от алгоритма — оперирование конкретными данными в процессе выполнения. Если алгоритм представляет собой только описание действий, требующихся для достижения цели, то программа содержит и описание данных в том числе. Алгоритм может быть массовым, то есть предназначаться для решения не одной задачи, а класса задач. Вместе с тем к его свойствам относят еще дискретность и определенность. Алгоритм подразумевает совершение элементарных действий над элементарными объектами, однако для разных исполнителей элементарность будет разной.
Понятие алгоритма гораздо шире, нежели программы: базовое понятие математики. Компьютерная программа является объектом права интеллектуальной собственности, алгоритм же к таковым не относится.
Выводы TheDifference.ru
- Алгоритм — инструкция, программа — запись последовательности инструкций.
- Алгоритм может быть представлен в любом виде, программа — на языке программирования.
- Программа включает описание данных и действий, алгоритм — только действий.
- Алгоритм может быть предназначен для решения класса задач.
- Алгоритм является базовым понятием математики.
- Программа является объектом авторского права.
Источник: thedifference.ru
Алгоритм программы что это
Алгоритм ? набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Это связано с тем, что работа каких-то инструкций алгоритма может быть зависима от других инструкций или результатов их работы.
Таким образом, некоторые инструкции должны выполняться строго после завершения работы инструкций, от которых они зависят. Независимые инструкции или инструкции, ставшие независимыми из-за завершения работы инструкций, от которых они зависят, могут выполняться в произвольном порядке, параллельно или одновременно, если это позволяют используемые процессор и операционная система.
Алгоритм означает точное описание некоторого процесса, инструкцию по его выполнению. Разработка алгоритма является сложным и трудоемким процессом. Алгоритмизация ? это техника разработки (составления) алгоритма для решения задач на ЭВМ. Блок-схема обобщенного алгоритма работы программы представлена на рисунке 3.9.
Рисунок 3.9 — Блок-схема алгоритма работы программы
Для записи алгоритма решения задачи применяются следующие изобразительные способы их представления:
· блок-схема (схема графических символов);
Разработка программного продукта
Со времени появления платформы .NET (примерно в 2001 г.) среди библиотек базовых классов появился API по имени Windows Forms, представленный в основном сборкой System.Windows.Forms.dll. Инструментальный набор Windows Forms предоставляет типы, необходимые для построения графических пользовательских интерфейсов для настольных компьютеров, создания специализированных элементов управления, управления ресурсами (например, строками и значками) и выполнения других задач, возникающих при программировании для пользовательских компьютеров. Имеется и дополнительный API по имени GDI+ (представленный сборкой System.Drawing.dll), который предоставляет дополнительные типы, позволяющие программисту генерировать двухмерную графику, взаимодействовать с сетевыми принтерами и обрабатывать графические данные [9].
Windows Forms (и GDI+) применяются в платформе .NET 4.0 и, видимо, будут существовать еще некоторое время (возможно, длительное) в составе библиотеки базовых классов. Правда, после выхода .NET 3.0 компания Microsoft выпустила совершенно новый инструментальный API под названием Windows Presentation Foundation (WPF) [9].
Несомненно, наиболее важным пространством имен Windows Forms является System.Windows.Forms. Типы из этого пространства имен можно разбить на следующие крупные категории [9]:
· Базовая инфраструктура. Это типы, представляющие базовые операции программ, которые используют Windows Forms (Form и Application), и различные типы, предназначенные для взаимодействия с устаревшими элементами ActiveX, a также для взаимодействия с новыми специальными элементами управления WPF;
· Элементы управления. Эти типы применяются для создания графических пользовательских интерфейсов (наподобие Button, MenuStrip, ProgressBar и DataGridView), все они являются производными от базового класса Control. Элементы управления допускают настройку на этапе проектирования и видимы (по умолчанию) во время выполнения;
· Компоненты. Это типы, которые не порождены от базового класса Control, но все-таки могут предоставлять программам Windows Forms визуальные возможности (например, ToolTip и ErrorProvider). Многие компоненты (к примеру, Timer и System.ComponentModel.BackgroundWorker) не видимы во время выполнения, но все-таки допускают настройку на этапе проектирования;
· Окна стандартных диалогов. В Windows Forms имеется несколько заготовленных диалоговых окон для распространенных операций (например, OpenFileDialog, PrintDialog и ColorDialog).
В мире Windows Forms тип Form представляет любое окно в приложении, включая главное окно самого верхнего уровня, дочерние окна приложений с многодокументным интерфейсом (multiple document interface ? MDI), а также модальные и немодальные диалоговые окна. Тип Form содержит множество возможностей, унаследованных от классов-предков, а также из реализуемых им многочисленных интерфейсов.
Для полноценного порождения типа Form нужны и многие другие базовые классы и интерфейсы, но даже профессиональному разработчику Windows Forms совсем не обязательно знать роли всех членов всех классов или реализованных интерфейсов.
Для создания нового проекта в Visual Studio выберем «New»-«Project», в появившемся окне выберем «Windows Form Application» и заполним предложенные поля.
Для передачи запроса SQL серверу и возврату результата в виде набора строк (запросы на выборку) был реализован метод «GetSQLData», представленный ниже.
В качестве параметра метод принимает строку-запрос, в качестве возвращаемого значения имеет тип «DataTable» ? таблицу данных.
public static DataTable GetSQLData(string query)
DataSet ds = new DataSet();
SqlConnection myConnection = new SqlConnection(Config.ConnectionString);
catch (Exception e1)
SqlCommand comm = new SqlCommand(query);
SqlDataAdapter dataAdapter = new SqlDataAdapter(comm);
Источник: studbooks.net
Алгоритмы и программы
Понятие алгоритма является одним из основных в современной науке и практике. Еще на самых ранних ступенях развития математики (Древний Египет, Вавилон, Греция) в ней стали рассматриваться различные вычислительные процессы чисто механического характера. С их помощью искомые величины ряда задач вычислялись последовательно из исходных величин по определенным правилам и инструкциям. Со временем все такие процессы в математике получили название алгоритмов (алгорифмов).
Алгоритм есть совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
Термин алгоритм происходит от имени средневекового узбекского математика Аль-Хорезми, который еще в IX в. (825 г.) дал правила выполнения четырех арифметических действий в десятичной системе счисления. Процесс выполнения арифметических действий был назван алгоризмом.
С 1747 г. вместо слова алгоризм стали употреблять алгорисмус, смысл которого состоял в комбинировании четырех операций арифметического исчисления — сложения, вычитания, умножения, деления.
К 1950 г. алгорисмус стал алгорифмом. Смысл алгорифма чаще всего связывался с алгорифмами Евклида — процессами нахождения наибольшего общего делителя двух многочленов, наибольшей общей меры двух отрезков и т. п.
Способы записи алгоритмов
Алгоритм должен быть понятен (доступен) пользователю и/или машине. Доступность пользователю означает, что он обязан отображаться посредством конкретных формализованных изобразительных средств, понятных пользователю. В качестве таких изобразительных средств используются следующие способы их записи:
- • словесный;
- • формульный;
- • табличный;
- • операторный;
- • графический;
- • язык программирования.
Формульный способ основан на строго формализованном аналитическом задании необходимых для исполнения действий.
Табличный способ подразумевает отображение алгоритма в виде таблиц, использующих аппарат реляционного исчисления и алгебру логики для задания подлежащих исполнению взаимных связей между данными, содержащимися в таблице.
Операторный способ базируется на использовании для отображения алгоритма условного набора специальных операторов: арифметических, логических, печати, ввода данных и т. д.; операторы снабжаются индексами и между ними указываются необходимые переходы, а сами индексированные операторы описываются чаще всего в табличной форме.
Графическое отображение алгоритмов в виде блок-схем — весьма наглядный и распространенный способ. Графические символы, отображающие выполняемые процедуры, стандартизованы. Наряду с основными символами используются и вспомогательные, поясняющие процедуры и связи между ними.
Алгоритмы могут быть записаны и в виде команд какого-либо языка программирования. Если это макрокоманды, то алгоритм читаем и пользователем-программистом, и вычислительной машиной, имеющей транслятор с соответствующего языка.
Приведем пример словесного представления алгоритма на примере нахождения произведения п натуральных чисел (с= п = = 1 х 2 х 3 х 4 х . х п).
Этот процесс может быть записан в виде следующей системы последовательных указаний (пунктов):
- 1. Полагаем с равным единице и переходим к следующему пункту.
- 2. Полагаем / равным единице и переходим к следующему пункту.
- 3. Полагаем с равным с=сх/ и переходим к следующему указанию.
- 4. Проверяем, равно ли /’ числу п. Если / = п, то вычисления прекращаем. Если / 3 + Ьх 2 + сх + с1 = 0, то он должен быть вариативен, т. е. обеспечивать возможность решения для любых допустимых исходных значений коэффициентов а, Ь, с, с1. Про такой алгоритм говорят, что он удовлетворяет требованию массовости. Свойство массовости не является необходимым свойством алгоритма. Оно, скорее, определяет качество алгоритма; в то же время свойства точности, понятности и конечности являются необходимыми (иначе это не алгоритм).
Запись алгоритмов в виде блок-схем
Алгоритмы можно записывать по-разному. Форма записи, состав и количество операций алгоритма зависят от того, кто будет исполнителем этого алгоритма. Если задача решается с помощью ЭВМ, алгоритм решения задачи должен быть записан в понятной для машины форме, т. е. в виде программы.
Схема алгоритма — графическое представление алгоритма, дополняемое элементами словесной записи. Каждый пункт алгоритма отображается на схеме некоторой геометрической фигурой или блоком. При этом правило выполнения схем алгоритмов регламентирует ГОСТ 19.002—80 «Единая система программной документации» (табл. 1.28).
Блоки на схемах соединяются линиями потоков информации. Основное направление потока информации идет сверху вниз и слева направо (стрелки могут не указываться), снизу вверх и справа налево — стрелка обязательна. Количество входящих линий для блока не ограничено. Выходящая линия — одна, за исключением логического блока.
Таблица 1.28. Основные элементы блок-схем
по ГОСТ 19.003—80 (ЕСПД):а = 10,15,20 мм; b = ^, 5а
Вычислительные действия или последовательность действий
Выбор направления выполнения алгоритма в зависимости от некоторого условия
- 1. Общие обозначения ввода (вывода) данных (вне зависимости от физического носителя).
- 2. Вывод данных, носителем которых является документ
Начало или конец алгоритма, вход в программу или выход из нее
г = а/4
Процесс пользователя (подпрограмма)
Вычисление по стандартной программе или подпрограмме
Функция выполняет действия, изменяющие пункты (например, заголовок цикла) алгоритма
Указание связи прерванными линиями между потоками информации в пределах одного листа
Указание связи между информацией на разных листах
Базовые структуры алгоритмов
Это определенный набор блоков и стандартных способов их соединения для выполнения типичных последовательных действий. К основным структурам относятся следующие — линейные, разветвляющиеся, циклические (рис. 1.26).
Рис. 1.26. Примеры структур алгоритмов: а — линейный алгоритм; б — алгоритм с ветвлением; в — алгоритм с циклом
Линейными называются алгоритмы, в которых действия осуществляются последовательно друг за другом. Стандартная блок-схема линейного алгоритма приводится на рис. 1.26, а (вычисление суммы двух чисел — А и В).
Разветвляющимся называется алгоритм, который, в отличие от линейных алгоритмов, содержит условие, в зависимости от истинности или ложности которого выполняется та или иная последовательность команд. Таким образом, команда ветвления состоит из условия и двух последовательностей команд.
Примером может являться разветвляющийся алгоритм, изображенный в виде блок-схемы (рис. 1.26, б). Аргументами этого алгоритма являются две переменные А, В, а результатом — переменная X. Если условие А > В истинно, то выполняется операция X := А х В, в противном случае выполняется X := А + В. В результате печатается то значение переменной X, которое она получает при выполнении одной из серий команд.
Циклическим называется алгоритм, в котором некоторая последовательность операций (тело цикла) выполняется многократно. Однако «многократно» не означает «до бесконечности». Организация циклов, никогда не приводящая к остановке в выполнении алгоритма, является нарушением требования его результативности — получения результата за конечное число шагов.
В цикл в качестве базовых входят — блок проверки условия и тело цикла. Перед операцией цикла осуществляется начальное присвоение значений тем переменным, которые используются в теле цикла. Если тело цикла расположено после проверки условий Р (цикл с предусловием), то может случиться так, что при определенных условиях тело цикла не выполнится ни разу. Такой вариант организации цикла, управляемый предусловием, называется цикл «ПОКА»/«WHILE» (здесь условие — это условие на продолжение цикла).
Возможен другой случай, когда тело цикла выполняется, по крайней мере, один раз и будет повторяться до тех пор, пока не станет истинным условие. Такая организация цикла, когда его тело расположено перед проверкой условия, носит название цикла с постусловием, или цикла «ДО»/«FOR». Истинность условия в этом случае — условие окончания цикла.
Отметим, что возможна ситуация с постусловием и при организации цикла «ПОКА». Итак, цикл «ДО» завершается, когда условие становится истинным, а цикл «ПОКА» — когда становился ложным. Современные языки программирования имеют достаточный набор операторов, реализующих как цикл «ПОКА», так и цикл «ДО».
Рассмотрим пример алгоритма вычисления факториала, изображенный на рис. 1.26 (с циклом «ПОКА»). Переменная N получает значение числа, факториал которого вычисляется. Переменной N, которая в результате выполнения алгоритма должна получить значение факториала, присваивается первоначальное значение 1. Переменной К также присваивается значение 1. Цикл будет выполняться, пока справедливо условие N> К. Тело цикла состоит из двух операций N = N1 х К и К= К + 1.
Циклические алгоритмы, в которых тело цикла выполняется заданное число раз, реализуются с помощью цикла со счетчиком. Цикл со счетчиком реализуется с помощью команды повторения.
Процесс решения сложной задачи довольно часто сводится к решению нескольких более простых подзадач. Соответственно при разработке сложного алгоритма он может разбиваться на отдельные алгоритмы, которые называются вспомогательными. Каждый такой вспомогательный алгоритм описывает решение какой-либо подзадачи.
Процесс построения алгоритма методом последовательной детализации состоит в следующем. Сначала алгоритм формулируется в «крупных» блоках (командах), которые могут быть непонятны исполнителю (не входят в его систему команд) и записываются как вызовы вспомогательных алгоритмов. Затем происходит детализация, и все вспомогательные алгоритмы подробно расписываются с использованием команд, понятных исполнителю.
- 1. Дайте классификацию информации.
- 2. Каковы преимущества цифровой информации по отношению к аналоговой?
- 3. Перечислите методы кодирования символов.
- 4. Перечислите методы кодирования численной информации.
- 5. Переведите число 32 45110 в шестнадцатеричную и восьмеричную системы счисления.
- 6. Переведите число 32 45116 в десятичную и восьмеричную системы счисления.
- 7. В чем заключаются особенности двоичной арифметики?
- 8. Подсчитайте произведение 1ГА16 и 2ВС16 по модулю 8.
- 9. Подсчитайте сумму 4578 и 3758 по модулю 3.
- 10. Перечислите логические элементы ЭВМ.
- 11. Что такое логические узлы ЭВМ?
- 12. Составьте таблицы истинности для левого (-1(А д В)) и правого (-И V -,б) выражений 1-го закона де Моргана. Проверьте их на соответствие.
- 13. Составьте таблицы истинности для левого (-1(А V В)) и правого (-.А V -,б) выражений 2-го закона де Моргана. Проверьте их на соответствие.
- 14. Последний столбец таблицы истинности для двухместных операций, очевидно, может содержать 16 = 2 4 различных сочетаний «1» и «О». Следовательно, всего может быть определено 16 логических операций над двумя переменными, из которых нами рассмотрены только пять. Составьте таблицу истинности для одной из 9 оставшихся вне рассмотрения функций и попытайтесь построить логическое выражение для этой функции.
- 15. Перечислите базовые структуры алгоритмов и программ.
Источник: studref.com
Алгоритм в информатике — виды, структура и свойства
С помощью компьютера специалисты по информационным системам записывают новые программы, а также анализируют работу и исправляют ошибки в уже имеющихся. Но всё это невозможно совершить без знания алгоритмов. В информатике к изучению этого понятия приступают ещё в школе. Ученики получают первое представление о разных видах алгоритмов, их свойствах и способах создания.
Особенности понятия
Алгоритмы появились вместе с математикой, а первые упоминания о них встречаются в книге математика Мухаммеда бен Мусы аль-Хорезми из города Хорезма. Он описал методы выполнения различных действий с многозначными числами еще в 825 году. Само слово «алгоритм» появилось после того, как книгу ученого перевели на латинский язык в Египте.
Современное определение алгоритма в информатике — это описание действий, последовательное выполнение которых позволяет решить поставленную задачу за конкретное количество шагов.
С этим человек сталкивается каждый день, когда читает рецепты в кулинарных книгах, инструкции к различной технике, правила решения заданий. Но обычно все эти действия выполняются автоматически, без их анализа. Родители сталкиваются с этим понятием, когда объясняют детям, как открыть двери ключом или почистить зубы. Алгоритмов в окружающем мире множество, но есть общие признаки для всех их видов.
Свойства и виды
Для изучения понятия нужно разобраться в свойствах алгоритма в информатике. Их существует несколько:
- дискретность;
- детерминированность или определенность;
- понятность;
- завершаемость или конечность;
- массовость или универсальность;
- результативность.
Согласно свойству дискретности, алгоритмы должны описывать весь процесс решения задания в виде выполнения простых шагов. При этом на пункты отводится определенное количество времени. Каждый шаг должен определяться состоянием системы, то есть при одних и тех же исходных данных результат не меняется. Но есть и вероятностные алгоритмы, где пункты зависят от системы и случайно генерируемых чисел. В этой ситуации понятие становится подвидом обычного.
Понятность заключается в том, что команды алгоритма должны быть доступны конкретному исполнителю и входить в его личную систему. В ходе работы математическая функция при правильно заданных исходных данных выдает результат за определенное количество шагов. Иногда процедура может не завершиться, но вероятность таких случаев стремится к нулю.
Универсальность или массовость позволяет использовать алгоритм с разными наборами начальных данных. Последнее свойство обеспечивает его завершение в виде определенного числа — результата.
У каждого алгоритма есть свои начальные условия, цели и пути решения задачи. Существует большая разница между вычислительными и интерактивными видами. Происхождение первых связано с опытами ученого Тьюринга, они могут преобразовать входные данные в выходные. Вторые предназначены для связи с объектом управления, они работают только под внешним воздействием. Ученые выделяют несколько видов алгоритмов в информатике:
- детерминированные или жесткие;
- гибкие;
- линейные;
- разветвляющиеся;
- циклические;
- вспомогательные;
- структурные блок-схемы.
Жесткие еще называются механическими, так как чаще всего они используются для работы двигателя или машины. Они задают действия в единственно верной последовательности, что приводит к искомому или требуемому результату при условии выполнения процессов, для которых они и разработаны.
Гибкие алгоритмы делятся на эвристические и вероятностные. Первые используются при различных умственных выводах без строгих аргументов, а вторые дают возможность получить один результат несколькими способами.
Линейный тип — это набор команд, которые выполняются в строгой последовательности. Разветвляющийся включает хотя бы одно условие и при проверке дает разделение на несколько блоков. Появляются альтернативные ветвления программы.
В циклических видах несколько раз повторяются одни и те же действия, при этом меняются исходные данные. Сюда относятся переборы вариантов и бо́льшая часть способов расчета. Циклом в этом случае называют последовательность команд, которые нужно выполнить множество раз для достижения требуемого результата.
Подчиненный или вспомогательный вид является ранее разработанным алгоритмом для быстрого решения задачи. Он необходим для сокращения записи, если в структуре есть одинаковые команды. Схемами называются графические изображения с помощью блоков и соединяющих их прямых линий. Их используют перед программированием в качестве наглядных примеров, поскольку зрительное восприятие позволяет быстрее осмыслить процесс обработки информации и выявить возможные ошибки. В блоках отображаются исходные данные, которые вносятся в компьютер для вычислений.
Способы записи
Алгоритмы записываются несколькими методами. В информатике используется всего три:
- словесно-формульный;
- графический;
- программный.
В первом случае алгоритм записывается простым языком — словами и математическими формулами, что необходимо для понимания его теории. Здесь учитываются исходные данные, действия с ними и условия получения результата. Второй тип записи — компьютерное описание. Для этого применяются языки программирования и сами программы — форсы представления расчетов для их выполнения машиной.
Графическое описание состоит из связанных между собой географических фигур. Основные элементы блок-схем:
- прямоугольники;
- эллипсы;
- ромбы;
- шестиугольники;
- стрелки;
- пунктирные линии;
- соединительные фигуры.
В прямоугольниках записывают процессы, они указывают на выполнение операций, которые изменяют форму или значение данных. Ромбы содержат способы решения, здесь выбирается следующее направление в зависимости от поставленных условий. Модификации могут передаваться в шестиугольниках, где записываются операции, меняющие команды.
В блок-схемах можно выделить ручной ввод и предопределенные процессы. Первая фигура позволяет исполнителю ввести данные во время работы алгоритма через устройства, подключенные к компьютеру. Второе понятие заключается в использовании заранее записанных алгоритмов.
Графическое изображение содержит блоки документов и дисплеев. Оператор может вводить данные с бумаги и выводить их на нее, а также с помощью устройств, которые воспроизводят информацию на экране (проекторы для интерактивных досок, подключенные к компьютерам планшеты и ноутбуки).
Линии и соединительные фигуры указывают на связи между разными блоками и их последовательность. В схеме есть блоки начала и конца алгоритма, его прерывания, которое может произойти из-за сбоев в программе. Можно также указывать комментарии и пояснения исполнителя, для этого есть отдельные фигуры.
Правила создания
Существует несколько правил создания алгоритмов. Если их соблюдать, то в ходе работы всегда будет верный результат. Форма должна быть настолько простой, чтобы ее понял тот, кто занимается ее разработкой. Также не должно возникнуть проблем с чтением у того, кто будет выполнять описанные действия.
Объект, который проводит расчеты в алгоритме, называется исполнителем. Идеальными считаются роботы, компьютеры и другие машины. Они работают с программами, то есть схемами, написанными определенным языком программирования.
Разобраться с действиями помогут простые примеры алгоритмов по информатике. Когда есть ряд чисел от 1 до 100 и необходимо найти из них простые, то выбираются те, что делятся на единицу и себя. В этом случае используется циклическая структура:
- сначала нужно взять число 1;
- проверить, меньше ли оно, чем 100;
- если да, то узнать, простое ли оно;
- при выполнении условия записать;
- перейти к числу 2;
- повторить операцию.
Такие действия проводят со всеми числами. При этом первые четыре шага будут постоянно повторяться. Если попадается число, не являющееся простым (4, 6, 8 и т. д. ), то его нужно просто пропустить. Алгоритм в этом случае обладает предусловиями, то есть проверки происходят в начале цикла.
Анализ работы
Распространение информационных технологий привело к увеличению риска сбоев в работе программ. Предотвратить появление ошибок в алгоритмах можно с помощью доказательства их корректности математическими средствами. Такой анализ называется формальным методом, он предусматривает использование специального набора инструментов.
Гипотеза Ричарда Мейса утверждает, что избежать ошибок легче, чем их устранить. Благодаря доказательству корректности программ можно выявить их свойства, применяемые ко всем видам входных данных. Само понятие делится на две разновидности — частичную и полную. При первом типе корректности алгоритм дает правильный результат только для тех случаев, когда он завершается. Во втором случае программа завершает работу корректно для всего диапазона данных.
Исполнители во время проверки сравнивают выдаваемые данные со спецификой требуемого результата. Для доказательства корректности используются предусловия и постусловия. Первые должны выполняться перед включением программы, вторые — после завершения ее работы. Формальные методы успешно применяются для многих задач: верификации программ и микропроцессоров, разработки искусственного интеллекта, электронных схем и автоматических систем для железной дороги, спецификации стандартов.
Для выполнения алгоритма нужно только конкретное количество шагов, но на практике для этого потребуется много времени. В связи с этим введено понятие сложности. Она бывает временной, вычислительной и связанной с размерами алгоритма. Для увеличения эффективности используются быстрые программы, которые появились еще в 50-х годах прошлого века.
Источник: nauka.club