3 назовите функции программы компилятора

Компиляторы составляют существенную часть программного обеспечения ЭВМ. Это связано с тем, что языки высокого уровня стали основным средством разработки программ. Только очень незначительная часть программного обеспечения, требующая особой эффективности, программируется с помощью ассемблеров. В настоящее время распространено довольно много языков программирования.

Наряду с традиционными языками, такими, как Фортран, широкое распространение получили так называемые «универсальные» языки (Паскаль, Си, Модула-2, Ада и другие), а также некоторые специализированные (например, язык обработки списочных структур Лисп). Кроме того, большое распространение получили языки, связанные с узкими предметными областями, такие, как входные языки пакетов прикладных программ.

Для некоторых языков имеется довольно много реализаций. Например, реализаций Паскаля, Модулы-2 или Си для ЭВМ типа IBM PC на рынке десятки.

С другой стороны, постоянно растущая потребность в новых компиляторах связана с бурным развитием архитектур ЭВМ. Это развитие идет по различным направлениям. Совершенствуются старые архитектуры как в концептуальном отношении, так и по отдельным, конкретным линиям. Это можно проиллюстрировать на примере микропроцессора Intel-80X86.

C++ с нуля | 08 | Компиляция и линковка

Последовательные версии этого микропроцессора 8086, 80186, 80286, 80386, 80486, 80586 отличаются не только техническими характеристиками, но и, что более важно, новыми возможностями и, значит, изменением (расширением) системы команд. Естественно, это требует новых компиляторов (или модификации старых). То же можно сказать о микропроцессорах Motorola 68010, 68020, 68030, 68040.

В рамках традиционных последовательных машин возникает большое число различных направлений архитектур. Примерами могут служить архитектуры CISC, RISC. Такие ведущие фирмы, как Intel, Motorola, Sun, начинают переходить на выпуск машин с RISC-архитектурами. Естественно, для каждой новой системы команд требуется полный набор новых компиляторов с распространенных языков.

Наконец, бурно развиваются различные параллельные архитектуры. Среди них отметим векторные, многопроцессорные, с широким командным словом (вариантом которых являются суперскалярные ЭВМ). На рынке уже имеются десятки типов ЭВМ с параллельной архитектурой, начиная от супер-ЭВМ (Cray, CDC и другие), через рабочие станции (например, IBM RS/6000) и кончая персональными (например, на основе микропроцессора I-860). Естественно, для каждой из машин создаются новые компиляторы для многих языков программирования. Здесь необходимо также отметить, что новые архитектуры требуют разработки совершенно новых подходов к созданию компиляторов, так что наряду с собственно разработкой компиляторов ведется и большая научная работа по созданию новых методов трансляции.

1.2 Структура компилятора

Обобщенная структура компилятора и основные фазы компиляции показаны на рис. 1.1.

На фазе лексического анализа входная программа, представляющая собой поток литер, разбивается на лексемы — слова в соответствии с определениями языка. Основными формализмами, лежащим в основе реализации лексических анализаторов, являются конечные автоматы и регулярные выражения. Лексический анализатор может работать в двух основных режимах: либо как подпрограмма, вызываемая синтаксическим анализатором для получения очередной лексемы, либо как полный проход, результатом которого является файл лексем.

Читайте также:
Как удалить 3д программу

Этапы компиляции на Си: предобработка, трансляция, компоновка

В процессе выделения лексем лексический анализатор может как самостоятельно строить таблицы объектов (идентификаторов, строк, чисел и т.д.), так и выдавать значения для каждой лексемы при очередном к нему обращении. В этом случае таблицы объектов строятся в последующих фазах (например, в процессе синтаксического анализа).

На этапе лексического анализа обнаруживаются некоторые (простейшие) ошибки (недопустимые символы, неправильная запись чисел, идентификаторов и др.).

Основная задача синтаксического анализа — разбор структуры программы. Как правило, под структурой понимается дерево, соответствующее разбору в контекстно-свободной грамматике языка. В настоящее время чаще всего используется либо LL(1)-анализ (и его вариант — рекурсивный спуск), либо LR(1)-анализ и его варианты (LR(0), SLR(1), LALR(1) и другие). Рекурсивный спуск чаще используется при ручном программировании синтаксического анализатора, LR(1) — при использовании систем автоматического построения синтаксических анализаторов.

Результатом синтаксического анализа является синтаксическое дерево со ссылками на таблицы объектов. В процессе синтаксического анализа также обнаруживаются ошибки, связанные со структурой программы.

На этапе контекстного анализа выявляются зависимости между частями программы, которые не могут быть описаны контекстно-свободным синтаксисом. Это в основном связи «описание-использование», в частности, анализ типов объектов, анализ областей видимости, соответствие параметров, метки и другие. В процессе контекстного анализа таблицы объектов пополняются информацией об описаниях (свойствах) объектов.

Основным формализмом, использующимся при контекстном анализе, является аппарат атрибутных грамматик. Результатом контекстного анализа является атрибутированное дерево программы. Информация об объектах может быть как рассредоточена в самом дереве, так и сосредоточена в отдельных таблицах объектов. В процессе контекстного анализа также могут быть обнаружены ошибки, связанные с неправильным использованием объектов.

Затем программа может быть переведена во внутреннее представление. Это делается для целей оптимизации и/или удобства генерации кода. Еще одной целью преобразования программы во внутреннее представление является желание иметь переносимый компилятор. Тогда только последняя фаза (генерация кода) является машинно-зависимой. В качестве внутреннего представления может использоваться префиксная или постфиксная запись, ориентированный граф, тройки, четверки и другие.

Фаз оптимизации может быть несколько. Оптимизации обычно делят на машинно-зависимые и машинно-независимые, локальные и глобальные. Часть машинно-зависимой оптимизации выполняется на фазе генерации кода. Глобальная оптимизация пытается принять во внимание структуру всей программы, локальная — только небольших ее фрагментов.

Глобальная оптимизация основывается на глобальном потоковом анализе, который выполняется на графе программы и представляет по существу преобразование этого графа. При этом могут учитываться такие свойства программы, как межпроцедурный анализ, межмодульный анализ, анализ областей жизни переменных и т.д.

Наконец, генерация кода — последняя фаза трансляции. Результатом ее является либо ассемблерный модуль, либо объектный (или загрузочный) модуль. В процессе генерации кода могут выполняться некоторые локальные оптимизации, такие как распределение регистров, выбор длинных или коротких переходов, учет стоимости команд при выборе конкретной последовательности команд. Для генерации кода разработаны различные методы, такие как таблицы решений, сопоставление образцов, включающее динамическое программирование, различные синтаксические методы.

Читайте также:
Как блокировать рекламу в программах на Андроид

Конечно, те или иные фазы транслятора могут либо отсутствовать совсем, либо объединяться. В простейшем случае однопроходного транслятора нет явной фазы генерации промежуточного представления и оптимизации, остальные фазы объединены в одну, причем нет и явно построенного синтаксического дерева.

Источник: citforum.ru

Основные задачи компиляторов

Компьютеры сами по себе способны выполнять только очень ограниченный набор операций, называемых машинными кодами. В старые времена, когда появились первые компьютеры, программы писались в машинных кодах, представляющих собой последовательности двоичных чисел, однозначно воспринимаемых компьютером. В конце 50-х кодов прошлого века появились первые языки программирования, такие как язык ассемблера и Фортран. Для того, чтобы компьютер мог понять программу, написанную на каком-то языке программирования, необходим переводчик (транслятор) такой программы в машинные коды. Отметим, что, если оператор языка ассемблера отображается при трансляции чаще всего[1] в одну машинную инструкцию, предложения языков более высокого уровня отображаются, вообще говоря, в несколько машинных инструкций.

Трансляторы бывают двух типов: компиляторы (compiler) и интерпретаторы (interpreter). Процесс компиляции состоит из двух частей: анализа (analysis) и синтеза (synthesis). Анализирующая часть компилятора разбивает исходную программу на составляющие ее элементы (конструкции языка) и создает промежуточное представление исходной программы.

Синтезирующая часть из промежуточного представления создает новую программу, которую компьютер в состоянии понять. Такая программа называется объектной программой. Объектная программа может в дальнейшем выполняться без перетрансляции. В качестве промежуточного представления обычно используются деревья, в частности, так называемые деревья разбора. Под деревом разбора понимается дерево, каждый узел которого соответствует некоторой операции, а сыновья этого узла – операндам.

Интерпретатор

В отличие от компилятора, интерпретатор не создает никакой новой программы, а просто выполняет каждое предложение языка программирования. Можно сказать, что результатом работы интерпретатора является «число».

Вообще говоря, интерпретатор, так же, как и компилятор, анализирует программу на входном языке, создает промежуточное представление, а затем выполняет операции, содержащиеся в тексте этой программы. Например, интерпретатор может построить дерево разбора, а затем выполнить операции, которыми помечены узлы этого дерева.

В том случае, если исходный язык достаточно прост (например, если это язык ассемблера или Basic), то никакое промежуточное представление не нужно, и тогда интерпретатор – это простой цикл. Он выбирает очередную инструкцию языка из входного потока, анализирует и выполняет ее. Затем выбирается следующая инструкция. Этот процесс продолжается до тех пор, пока не будут выполнены все инструкции, либо пока не встретится инструкция, означающая окончание процесса интерпретации.

Компилятор

Компилятор переводит программы с одного языка на другой. Входом компилятора служит цепочка символов, составляющая исходную программу на языке программирования L1. Выход компилятора (объектная программа) также представляет собой цепочку символов, но принадлежащую другому языку L2, например, языку некоторого компьютера.

При этом сам компилятор написан на языке L3, возможно, отличающемся от первых двух. Будем называть язык L1 исходным языком, язык L2 – целевым языком, а язык L3 – языком реализации. Таким образом, можно говорить о компиляторе как об отображении множества L1 в множество L2, т.е. KL3: L1→L2.

Читайте также:
Программа ппдгр не видит ЭЦП что делать

Отметим, что далеко не всегда исходные программы корректны с точки зрения исходного языка. Более того, некорректные программы подаются на вход компилятору значительно чаще, чем корректные – таков уж современный процесс разработки программ. Поэтому крайне важной частью процесса трансляции является точная диагностика ошибок, допущенных во входной программе.

Существует огромное количество различных языков программирования, начиная с таких традиционных языков программирования как Fortran и Pascal и кончая современными объектно-ориентированными языками такими, как C# и Java. Практически каждый язык программирования имеет какие-то особенности с точки зрения создателя транслятора. Однако мы начнем с рассмотрения разнообразных целевых языков компиляторов.

Объектная программа

Объектная программа может быть

· последовательностью абсолютных машинных команд

· последовательностью перемещаемых машинных команд

· программой на языке ассемблера

· программой на некотором другом языке

Наиболее эффективным методом с точки зрения скорости компиляции является отображение исходной программы в абсолютную программу на машинном языке, пригодную для непосредственного исполнения. Такой тип компиляции больше всего подходит для небольших программ, не использующих независимо компилируемых подпрограмм.

Однако для более сложных программ необходимо создавать объектные программы в форме последовательности перемещаемых машинных команд. Перемещаемая машинная команда представляет собой команду, в которой адресация ячеек памяти производится относительно некоторого подвижного начала. Объектную программу называют также перемещаемым объектным сегментом. Этот сегмент может быть связан с другими сегментами, такими, как независимо компилируемые подпрограммы пользователя, подпрограммы ввода-вывода и библиотечные функции.

Такое связывание (создание единого перемещаемого объектного сегмента из набора различных сегментов) осуществляется программой, которая называется редактором связей. Далее единый перемещаемый объектный сегмент или модуль загрузки размещается в памяти программой, называемой загрузчиком, которая превращает перемещаемые адреса в абсолютные. После этого программа готова к выполнению.

Источник: mydocx.ru

Назовите функции программы-компилятора Выберите один ответ: 1) Перевод в машинный код одного оператора программы 2) Исполнение каждого оператора программы 3) Перевод в машинный код всей программы и создание нового файла, готового к исполнению 4) Последовательный перевод в машинный код и исполнение каждого оператора программы

Назовите функции программы-компилятора Выберите один ответ: 1) Перевод в машинный код одного оператора программы 2) Исполнение каждого оператора программы 3) Перевод в машинный код всей программы и создание нового файла, готового к исполнению 4) Последовательный перевод в машинный код и исполнение каждого оператора программы

Ответ на вопрос теста

Назовите функции программы-компилятора Выберите один ответ: 1) Перевод в машинный код одного оператора программы 2) Исполнение каждого оператора программы 3) Перевод в машинный код всей программы и создание нового файла, готового к исполнению 4) Последовательный перевод в машинный код и исполнение каждого оператора программы (Решение → 37243)

Назовите функции программы-компилятора Выберите один ответ: 1) Перевод в машинный код одного оператора программы 2) Исполнение каждого оператора программы 3) Перевод в машинный код всей программы и создание нового файла, готового к исполнению 4) Последовательный перевод в машинный код и исполнение каждого оператора программы

Библиотека Ирины Эланс, основана как общедоступная библиотека в интернете. Онлайн-библиотеке академических ресурсов от Ирины Эланс доверяют студенты со всей России.

Библиотека Ирины Эланс

Полное или частичное копирование материалов разрешается только с указанием активной ссылки на сайт:

Ирина Эланс открыла библиотеку в 2007 году.

Источник: student-files.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
EFT-Soft.ru